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Abstract

The present paper argues that a specific type of computation, the evolutionary com-
putation, has a particular epistemic status and it is an important instance in which a
philosophical concept of evolution can draw a bridge between AI and the practice of bio-
logical sciences. Philosophers focused on the relation between computation on one hand,
philosophical logic and philosophy of mind on the other hand. My aim is to explore the
epistemological aspects of evolutionary computation from a philosophy of science perspec-
tive. I argue that this type of computation has important consequences for the mainstream
epistemology and for the philosophy of numerical simulations used in science. The genetic
algorithms illustrate an “upward epistemology” from data to theories and is relevant in
the context of scientific discovery.

1 Introduction: Why Computational Philosophy?

Why do we need a philosophical analysis of artificial life? This question can be incorporated
in a more general topic: “philosophy of computation”. This ilk of philosophical analysis does
not have name, so I adopt here the neural denomination “philosophy and computation” as an
umbrella concept Beavers (2011); Floridi (2011). As several distinctive paradigms of computa-
tion are preeminent, I urge philosophers to be more nuanced in approaching computation as a
whole. In a slogan form, I claim that “philosophically, not all computations are equal”. I focus
on one type of computation—evolutionary computation, and argue for its novel epistemological
aspects, especially in the context of scientific knowledge. Adopting Beavers’ terminology, my
paper falls under the category of “epistemology (including philosophy of science) and evolu-
tionary computation” or “epistemology of evolutionary computation”.

Why computation and epistemology? Relating computer science to knowledge is a chal-
lenging task. Are computers in any significant way a source of knowledge? I take for granted
that contemporary philosophy of mind, philosophy of language, cognitive science, philosophical
logic and philosophy of mathematics would not look the same without the advancements in
artificial intelligence and computer science of the last six decades. Some philosophers have not
kept the pace with their peers: old-school ethicists, metaphysicians, epistemologists, and, sur-
prisingly, philosophers of science had barely shown interest in computation. Nonetheless, in the
past twenty years or so, epistemology of computation has become increasingly pervasive; ditto
about the philosophy of science and computation. For an recent approach to “computational
epistemology” and its relation to mainstream epistemology see Hendricks (2007) esp. Ch. 7.
Another take-home lesson, which I premise my argument on, is that the history of computation
is an central component of the “computational epistemology”. In my paper I highlight some
important moments in the history of evolutionary computation, and, equally important, I incite
philosophers to take a look at the promising future of this area.
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2 A Deflationist Position

Some philosophers, perhaps a majority, look with a jaundiced eye to “philosophy and com-
putation” and disbelieve that computation is philosophically interesting. Here is a template
for a deflationist argument about computation (A. Lovelace had raised similar worries in the
1850s): if computations are dummy tools or techniques with little philosophical relevance, and
if epistemology is not about tools, artifacts, or techniques, but about human knowledge and
philosophy of science is about the advancement of scientific knowledge by humans then no
matter how important they are to the advancement of knowledge, they do not deserve a philo-
sophical privileged position and standard epistemology/philosophy of science would suffice to
analyze them. In the early discussions on the foundations of computation, this question emerged
frequently: what is the epistemological difference between the output of a computational pro-
cess (be it computer program) and what an army of numerical analysts equipped with “slide
rules” can do? Philosophers wondered about the epistemic shift, what was the novel element
that was not present in the pre-existing work of numerical analysts? Whether computation is
epistemologically interesting depends on another question about artificial intelligence Samuel
(1959):

Q1: How can computers be made to do what needs to be done, without being told
exactly how to do it?

The computational deflationist argues for a negative answer to Q1. Some prevalent claims
in the philosophy of mind echo this claim: machines do not think, do not discover and do not
invent. An assumption for a negative answer to Q1—strongly opposed by the AI community,
is Simon (1969):

[1] A computer program is no better than the assumptions which it was built on.

The deflationist shows that Turing-like computation is a direct illustration of [1]. Turing
machines are programmed to solve one, known problem, based on a set of fixed rules and the
majority of computers around us are in fact such “glorified slide rules”. Algorithms are similar
to “analytic machines” because, among other things, the input always determines the output.
But the rules according to which the input determines the output are pre-programmed by a
human being. In this sense, the deflationary epistemologist claims that there is no element of
novelty in the results of a computer program as far human knowledge is concerned.

Computation in science, its application, the numerical simulation, and the respective scien-
tific method of “computational science” gained some momentum in the philosophy of science
literature in the last decade or so Humphreys (2009); Frigg and Reiss (2009); Hartmann (2008);
Humphreys (2004). A numerical simulation is a procedure used to build models involving equa-
tions that we cannot solve analytically and when no exact solutions are available or when the
exact solutions are not useful. Simulations are currently used to replace experiments and ob-
servations when data are sparse or inexistent. It is almost impossible to imagine a 21th century
science that jettisons of numerical simulations or computation methods. But until recently,
philosophers of science have not paid attention to the astonishing importance of numerical
simulations for the practice of science. This is derivative from the glorified slide rule sketched
above: computational science is a technique or tool in the hands of scientists, hence, their
second-class philosophical status.

E. Winsberg takes numerical simulations as mediators between theories and experiments
and the metaphor is calling them “mongrels”, between experiments and theories. Like models,
they retain a form of autonomy from both the theory and from experiments. One aspect
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of the numerical simulation is crucial to my argument: witness that in the “glorified slide
rule” argument, the theory or theoretical assumptions (or rules) based on which the numerical
simulations are supposed to work have to be already known to the scientists. To perform a
numerical simulation, one needs a full-fledged theory, already interpreted, already equipped
with a set of partial differential equations of the temporal dynamics of a physical system or an
idealized form of it. Whenever the analytic solution is discovered, a real experiment is possible
or new data is available, the numerical simulation can be thrown away. As E. Winsberg
suggests, numerical simulations have a downward epistemology : “we start from a theory and
justify inferences from it” Winsberg (2001):

[2] Computation in science is always used to justify an existing theory (or model).

One conclusion is that numerical simulations are second-order citizens of the world of sci-
entific methods and work as replacements for other more robust instruments of knowledge:
theories, models and experiments. Another foreseeable consequence of [2] is:

[3] Numerical simulations need a top-down account of scientific justification.

In philosophy of science, the computational deflationist asks again: do numerical simulations
add something new to the philosophy of theories, models, experiments, analogies or similarities?
Some philosophers of science, seemingly the majority, take them as epistemologically subordi-
nate and inferior, in the sense of brute tools of mechanization of the lowliest part scientific work
because they provide scientific knowledge only when other, more rigorous ways of represent-
ing the real world fail—similar to the glorified slide rules Eason et al. (2007); Frigg and Reiss
(2009). Numerical simulations introduce idealizations, approximations and even falsifications
in order to provide predictions or new results. They are all brute techniques, when analytical
methods or more elegant methods are not available. On all these accounts, a simulation is not
a reliable source of knowledge. Whenever the analytic solution is discovered, a real experiment
is possible or new data is available, numerical simulations can be stamped out.

Among the most vocal dissenters, R. Frigg and J. Reiss argue that we do not need a new
epistemology in dealing with numerical simulations because the specific problems they raise are
not philosophical in nature, but “mostly of a mathematical, psychological or sociological nature”
Frigg and Reiss (2009). As tools in applied mathematics, they combine the information the
model provides with the existing data and do not bring anything new to philosophy of science.

3 And the Anti-deflationism One

Other philosophers of science are more enthusiastic and believe that new epistemology and
methodology are needed for numerical simulations as they lie somewhere between traditional
theoretical sciences and the empirical methods of experimentation and observation. For P.
Galison, from the beginning, simulations have a new epistemology, as a new method of extract-
ing information from physical measurements, as well as a new metaphysics that presupposed
discrete entities interacting through stochastic processes Galison (1996). E. Winsberg suggests
that philosophers should be more liberal in interpreting numeric simulations as “a process
of knowledge creation, and one in which epistemological issues loom large” and as “a deeply
creative source of scientific knowledge” Winsberg (2010).

In my argument I side with Winsberg and add to his program an analysis of the epistemology
of evolutionary computation. I concede that the computational deflationism is partially true
for some types of computation, but unsatisfactory when it comes to evolutionary computation.
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The majority of the garden variety of programs, and perhaps the most successful, fall under the
“glorified slide rule” category. But philosophers should not fall for the tyranny of the majority.
The deflationism, with its Procrustean strategy, forces all computations into the “glorified slide
rule” bedframe. In order to deter philosophers from the “glorified slide rule” stance, I focus on
genetic programming and algorithms in evolutionary computation. Evolutionary computation
is still a minority, but as my argument goes, it cuts deeper into the computational epistemology.

There are roughly three philosophical contexts of computation: “computation as a ratio-
nal (logical) process”, “computation as mind” and “computation as life”. In the first context,
computation is related to the general theory of rationality which should include artificial ra-
tional agents. Whether a computer needs to follow rules in manipulating symbols or on the
contrary needs to mimic the natural learning are issues at the very heart of “computation as
mind”. They have stirred genuine cultural wars between philosophers (H. Dreyfus and J. Searle
are perhaps the leading figures) and the AI community. I show that in the latter context, at
least as controversial as the second, novel philosophical issues emerge—more or less loosely
related to mainstream epistemology and to philosophy of science. Analyzing “computation as
life” paradigm augments and diversifies epistemology, sheds light on simulations in the con-
text of scientific discovery and achievement of new scientific knowledge. I conclude that the
computational deflationism is not the preferable one—at least in this latter context.

3.1 Computation and Life

What is the relation between biology and computational processes? In the wake of computer
programming, Von Neumann asked “the oldest and the most fundamental of all questions about
simulation” Keller (2003):

Q2: How closely can a mechanical simulacrum be made to resemble an organism?

First off, the biomimetic strategy of interpreting algorithms as “optimal search” was pre-
figured by A. Turing Turing (1948, 1950).1 S. Ulam, one of the creators of the Monte Carlo
method, suggested that the right question when relating mathematics and computer science
to biology is not: “What mathematics can do for biology?”, but: “What biology can do for
mathematics” Ulam (1972).

Answers to Q2 are multi-faceted and philosophers have, I claim, a deep interest in analyzing
this analogy. One answer is informational complexity . Both DNA and computer programs are
complex informational processes. G. Chaitin, the father of the algorithmic information theory,
offered recently an indicative definition for this area of research Chaitin (2011):

Metabiology: a field parallel to biology that studies the random evolution of
artificial software (computer programs) rather than natural software (DNA), and
that is sufficiently simple to permit rigorous proofs or at least heuristic arguments
as convincing as those that are employed in theoretical physics. (my emphasis).

Chaitin assumes that there is an artificial analogue of the natural DNA and life. The
analogy cuts both ways: one can interpret a self-reproducing algorithm as more complex than
an ordinary algorithm. And one can see the DNA as an algorithm that “outputs” or “computes”
the functions of an organism. One possible outcome of “metabiology” is that we may learn about
the complexity of natural life by investigating artificial programs. One direction of research in

1 For a deep analysis of Turing’s connectionism, see Teuscher (2002); Copeland and Proudfoot (1996). It
worth noting that Turing did prefigure evolutionary computation; see Fogel (1998).
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“computation and life” based on complexity is cellular automata, and there are a couple of
attempts to discuss their metaphysical and methodological consequences from a philosophical
perspective.

Another answer to Q2, central to my argument, is the idea that life and computation can be
both interpreted as search for optimality . In the 1930s S. Wright interpreted a biological species
as a system that evolves in time by exploring a multi-peaked landscape heuristic of optimal
solutions to a “fitness problem” Wright (1932). The operation of optimization of search which
is typically performed by an algorithm can mimic a living organism that over a long period of
evolution fits the environment. On the other hand the process of adaptation and evolution is not
smooth. Organisms are subjected to random mutations. Is it a good idea to add randomness
to algorithms? There are several types of stochastic algorithms each of them being more or
less biomimetic in their nature. Biomimetic strategies are widely used in robotics and artificial
intelligence, but they are almost ignored by philosophers. In genetic programming randomness
is not a brute tool, as we shall see in the next sections.

After Turing’s serendipitous proposal, evolutionary computation was rediscovered and rein-
vented at least ten times between the 50s and early 80s Fogel (1998). The milestone is John
Holland’s seminal work Adaptation in Natural and Artificial Systems (1975), which impacted
the community of programmers only in the 1980s. Following Turing and von Neumann, Holland
was able to see the potential of using the knowledge on natural adaptation process to improv-
ing search techniques and applied the principles of natural selection directly to problem-solving
algorithms.2 One fundamental difference, not available in Turing’s time, is that selection oc-
curs better at the level of population, not at the level of individuals. Genetic algorithms are
iterative procedures of searching for the optimal solution to a problem P. They are based on
the metaphor of biological processes in which organisms: (a) non-consciously adapt to the
“environment” P and (b) are selected by a supraindividual mechanism such as selection.3

Genetic algorithms start from a given number of initial individuals randomly distributed in
a given space, called the initial population. The genetic algorithm transforms individuals, each
with an associated value of fitness, into a new generation by using the principles of survival-
of-the-fittest, reproduction of the fittest and sexual recombination and mutation. Similar to
Wright’s landscape, the genetic algorithm finds “the most suitable” or the “best so far” solution
to the problem by breeding individuals over a number of generations.

The procedure can be stopped by a termination condition: when the sought-for level of
optimality is reached or when all the solutions converge to one candidate. The fitness function
estimates the fitness to breeding of individuals in accordance with the principle of survival and
reproduction of the fittest:

� Better individuals are more likely to be selected than inferior individuals.

� Reselection is allowed.

� Selection is stochastic.

The genetic algorithm ends with a termination condition that can be the satisfying of a
success predicate or completing a maximum number of steps. The success predicate depends
on the user’s choice and can be deemed as a pragmatic criterion. The winner is designated at
the “best-so-far” individual as the result of the run.

2 See the background of genetic algorithms in Tomassini (1995); Koza et al. (1999, 2003); Affenzeller (2009);
Olariu and Zomaya (2006). An interesting approach posing some foundational questions is de De Jong (2006)

3 I take here algorithms as abstract, mathematical objects, whereas programs as their concrete instantiation
on a machine. A sensitive difference is between genetic algorithms, genetic programming and genetic strategies.
See de De Jong (2006).
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3.2 Diagram of a Standard Generic Algorithms

Here is an abstract implementation of a genetic algorithm:

produce an initial population of

individuals (1)

WHILE `termination’ not met do (2)
evaluate the fitness of all

individuals (3)

select fitter individuals for

reproduction (4)
produce new individuals (5)

generate a new population by

inserting some new

good individuals and

by discarding some

‘bad’ individuals (6)

mutate some individuals (7)

ENDWHILE (8)

Call the individual(s) who satisfy

the ‘termination’ condition

the ‘‘best-fit-so-far’’ (9)

Before discussing a concrete implementation of genetic algorithms, some paramount features
are worth nothing: randomness and stochasticity, and unrepeatability.

Genetic algorithms can be or not random, depending on the mutation operator occurring
in step (7) or by selecting the individuals for reproduction in step (5). An algorithm becomes
deterministic if exactly one parent is identically reproduced or if two parents are combined
without adding or losing information based solely on their fitness. “Evolution programming”, a
precursor of evolutionary computation, was developed in the 1960s with no sexual reproduction,
only by mutations at the level of the individuals. The paradigm is adaptation and selection
based on competition. The idea of genetic mutation was not well understood in the 1960s: see
Fogel (1998); Fogel et al. (1966).

The principles of recombination, selection, and mutation are basically “operators” in the
algorithm to generate new individuals. Crossover takes two individuals called parents and
produces two new individuals, the offspring, by swapping substrings of the parents. Randomly
choosing two parents to mate or randomly deleting or adding information from the parents will
make the algorithm stochastic. Mutation is a background redistribution of strings to prevent
premature convergence to local optima.

In this scenario, weak individuals may survive “by luck” and fit individuals may not be
drawn to reproduce. The advantage of a random mutation is that at least some populations,
ideally a few only, could escape the traps which deterministic methods may be captured by,
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and end up with an unexpected and novel result. For very complex problems, this biomimetic
procedure can output results which are definitely not accessible to deterministic algorithms if
a delicate balance between the mechanism of selection that decrease variation and those that
increase variation (mutation) has been achieved.

Because of the stochastic element, the best are not guaranteed to be selected, and the worst
are not eliminated. One can say that the algorithm favors the best and marginalizes the unfit.
The selection is not entirely “greedy” hill climbing in the search space. One mechanism is the
fitness-proportionate selection: individuals are selected according to their fitness. Other is a
tournament in which two individuals are chosen randomly from a population of fit individuals.

Third, genetic algorithms are stochastic in two major respects: both the operation of selec-
tion and reproduction are random. That means the results (offsprings) are not direct results of
the input data (the parents). This is in direct analogy with the way we can run the tape of life
and every time a different rational agent will emerge as the “better-to-fit”. There are several
consequences to how we interpret the epistemology of the genetic algorithms:

different runs of the genetic algorithms with the same initial population will render
in general different results.

they do not find the global optimum solution to a problem with certainty, but have
a better chance to find it stochastically.

Second, a genetic algorithm is abstract and needs an interpretation. To implement a ge-
netic algorithm in a concrete computer program one needs a representation of the individual, a
problem-specific fitness function assigning a value to each individual (in this sense, the fitness
function is fully defined) and a concrete termination condition. The frequently used represen-
tation of an individual is a fixed-length character string similar to a chromosome that encodes
potentially the solution to the problem. But it is more challenging to pick the fitness function,
the initial population, its size, the mutation rate, crossover strength, or the selection method.
Sometimes, an effective terminator condition is sometimes impossible to determine. One can
see in what sense genetic programming is prima facie under the spell of [2].

These difficulties of genetic algorithms are compensated by their effectiveness in global
search. Remember that they maintain a population of solutions which are constantly updated
with fitter new individuals and hence avoid local optima. For a certain complexity of the search
space, a genetic algorithm has a better chance to find the global optimum. This, I claim,
radically changes the epistemological aspects of genetic algorithms. They are very efficient in
solving “hard problems” where little or nothing is known about the sought-for structure and
when discovering new structures trumps the process of evaluating existing knowledge.

4 EUREQA and its Applications

As advertised, Eureqa is a genetic software designed to discover equations and symmetries
that scientists haven’t been able to discover Lab (2009). The individuals in this case can be
equations, invariants or symmetry groups of a specific set of data. But in general individuals may
be models and scientific heuristic methods of search—not necessary mathematical objects. Each
individual is tested against a bank of experimental data. Many individuals do not make sense
mathematically or do not meet some consistency criteria, so they are killed. Some may fit the
data better than others. The software saves these individuals for “breeding”, cross-combining
a ‘father’ with a ‘mother’. It is claimed that over hundreds of thousands of generations, some
extremely fit individuals emerge.
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Schmidt and Lipson refined the algorithm until it could handle one of the most complex
systems of all: The chaotic double pendulum. Such a pendulum swings its arms in a way that’s
virtually impossible to predict. Because there is seemingly no pattern whatsoever, it would be
almost impossible for a human to find an equation describing the motion of the pendulums.
Their evolutionary algorithm, though, was able to breed an equation describing the kinetic and
potential energy of the system. Not only that, the equation ‘discovered’ by Eureqa shows that
energy is always conserved. It had ‘rediscovered’ the first law of thermodynamics, one of those
immutable laws of nature.

With Eureqa, not only analytical functions have been discovered from empirical data, but
also structures which are highly relevant to physical sciences: Hamiltonians, Lagrangians, laws
of conservation, symmetries, and other invariants Schmidt and Lipson (2009). The algorithm
was able to infer the optimal form of the double pendulum Hamiltonian by avoiding trivial or
meaningless solutions. A set of syntactical constraints can be imposed upon the combination
rules, the search is constraint by “naturalness”, “interestingness” or “meaningfulness”. For
these types of simulations, genetic algorithms are highly appropriate and are successfully used
in discovering regularities or patterns in scientific data. Schmidt and Lipson showed how a
genetic program discovers natural and meaningful invariants for physical systems such as double
pendulums or other simple oscillators. Here “relevance” plays a special role because it offers
a clear way to separate trivial conservations of a quantity from real useful “invariants”. How
do we pick the non-trivial ones? Schmidt and Lipson propose a very interesting criterion
for non-triviality of invariance: the candidate equations should predict connections between
dynamics of subcomponents of the system, which is absolutely crucial for the modeling of
mechanisms Schmidt and Lipson (2009). Schmidt and Lipson fed both synthetic and physical
data into the algorithm. The algorithm does not produce a single set of equations, but a
small set of candidates. In the spirit of the GA procedure, the next step is to optimize the
balance between the predictive power and the complexity/parsimony of each candidate. From
a statistical analysis, they inferred that terms that are frequently used and are more complex
have also meaning.

5 A Concrete Result

To illustrate, let us focus on a recent result by Schmidt and Lipson who showed how genetic
programming discovers natural and meaningful invariants for physical systems such as double
pendulums, systems with two springs and other simple oscillators Schmidt and Lipson (2009).4

With Eureqa, they have discovered not only analytical functions from empirical data, but
structures which are highly relevant to physical sciences: Hamiltonians, Lagrangians, laws of
conservation, symmetries, and other invariants Schmidt and Lipson (2009). Their algorithm
was able to infer the optimal form of the double pendulum Hamiltonian by avoiding trivial
or meaningless solutions. Their algorithm was able to infer the optimal form of the double
pendulum Hamiltonian by avoiding trivial or meaningless solutions. Schmidt and Lipson refined
the algorithm until it handled the chaotic double pendulum. The genetic algorithm to find
an equation describing the kinetic and potential energy of the system and the conservation of
energy for this system.

It is claimed that by moving away from discovering equations that fit a set of data, ge-
netic algorithms have become more human-friendly. The type of constraints the programmer
imposes upon the search for symbolic regression is “naturalness”, “interestingness” or “mean-

4 The former can exhibit chaotic behavior at certain energies.
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ingfulness” of the results. For these types of simulations, it seems that genetic programs are
highly appropriate.

Here “relevance” plays a special role. It is easy to find conservation of a quantity or invariants
for any given system: in fact there are infinite numbers of conserved quantities for any given
system. How do we pick the non-trivial ones? Schmidt and Lipson propose a criterion for non-
triviality of invariance: the candidate equations should predict connections between dynamics
of subcomponents of the system. More precisely, the conservation equations should be able to
predict connections among derivatives of groups of variables over time, relations that we can
also readily calculate from new experimental data Schmidt and Lipson (2009).

Schmidt and Lipson fed both synthetic and physical data into the algorithm. The algorithm
was able to infer energy laws for each system: Hamiltonians and Lagrangean equations. The
algorithm does not produce a single set of equations, but a small set of candidates for the
analytical solutions. In the spirit of the GA procedure, the next step is to optimize the
balance between the predictive power and the complexity/parsimony of each candidate. By
calculating the Pareto front of the dependence predictive ability versus parsimony, Schmidt&
Lipson found that there are two cliffs where predictive ability jumps rapidly at some small
change in complexity.5

Schmidt and Lipson warn that their algorithm does not provide a meaning to the discovered
analytic solutions. What if we simulate the same type of system but with different masses,
elastic constants, lengths etc.? After a dimensional analysis the algorithm was able to identify
the metric units of the coefficients involved Schmidt and Lipson (2009). Bootstrapping can also
be used to infer laws for more complex systems. From a statistical analysis, they inferred that
terms that are frequently used and are more complex have also meaning. Trigonometric terms
representing potential energy, squared velocities that are associated to kinetic energy and so
on.

6 Three Rebuttals and Three Paths

Three problems. Here are some problems that impact generally my analysis. First, unlike
Turing computation genetic programs are not universal computational tools. They are worth
employing only when other methods of searching failed—especially in cases when we know
almost nothing about the structure of the search space. Otherwise, genetic algorithms are most
likely outrun by more conventional methods, even by “brute” stochastic search methods. Your
car, your phone or your desktop computer do not run genetic programs, and even applications
of EUREQA in science are really limited.Second, genetic algorithms are certainly not the only
stochastic algorithms used to mimic scientific discovery. In fact there are algorithms, mostly
stochastic, that start from data and generate models or even laws of nature: deterministic
algorithms are also in the game here. Algorithms based on induction were created in the
1980s by H. Simon, P. Langley, J. Shrager, etc.: for example, “BACON” was able to rediscover
Kepler’s Law, Prout’s hypothesis about atomic structure etc.6 But BACON was inherently
limited: there was no optimization, no combinatorial procedure between previous results, and
no termination condition. As some philosophers dissented, such programs cannot surpass the

5 For computational and pragmatic reasons, we can pick the expression that sits on the edge of the “Pareto
cliff”, the one that offer the best balance between complexity and predictability.

6 Other “discovery programs” were: OCCAM, GALILEO, HUYGENS, etc. See Simonton (2004). The
philosophical literature on BACON can be found in Simon et al. (1981) and accompanying papers in the same
volume.
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known problem of induction and do provide explanations.7

Three paths. Last but not least, the solutions of a genetic program are in many cases
inscrutable. Genetic programs are able is to produce symbolic forms of possible laws from
data by avoiding some of the problems that mired other techniques: the over-fitting problem,
stickiness to local maxima/minima, etc. A deflationist can complain that there is no way to
follow the solution of a genetic algorithm, therefore it is not justified. The only aspect which
is epistemologically accessible to the scientist is comparing results and deciding the best fit.
Previous generations and the evolution itself is in many cases too complicated to follow or
alternatively is too stochastic to constitute a justification per se.

Despite these problems, as a first philosophical stab to genetic algorithms, my analysis com-
plements and augments the existing literature on computational epistemology and on numerical
simulation. I claim that analyzing them provides a bunch of “philosophical models” that help
us understanding some controversial issues in epistemology and philosophy of science. Second,
they anticipate perhaps the way scientific methodology and knowledge may look in a couple of
decades.

First, in respect of mainstream epistemology, genetic algorithms shed light on a very contro-
versial problem regarding the relation between evolution and rationality. Second, in philosophy
of science, by analyzing Schmidt’s and Lipson’s result, one can see a case of “upward epistemo-
ogy” in computational science and a rare case in which computation can be potentially used
in the context of discovery, not only in the context of justification. Third, and this is more
important for my present argument, the genetic algorithms shed lights on the relation between
rationality and evolution.

6.1 Rationality and Evolution

Concerning the latter path, several authors (Quine, Dennett, Fodor, i.a.) have suggested that
agents which are more rational will survive. In other words, evolution rules out quickly agents
which are irrational. According to such a philosophical doctrine, (a) evolution produces indi-
viduals which are good approximations to an optimally well designed system and (b) optimally
well-designed systems are rational agents. Without further evidence, I claim that the debate
between rational and irrational evolutionary agents can be investigated further by scrutinizing
genetic algorithms. Genetic algorithms can illustrate the relationship between intuitive and
analytic thought and ultimately between the irrationality of luck, the rationality of optimiza-
tion and the intricate process of evolution de Sousa (2007). Remember that for the same input
and on the same computer, the same algorithm does not output the same result at every run.
But there is always a demand for convergence to an objective “best run” which i suggests that
genetic algorithms can be used in tracking objectivity, rationality and, finally, truth by the
mean of a set of stochastic procedures. The general question that one can ask is whether there
is a convergence to all genetic algorithms towards a “best-from-better” solution.

Ditto about scientific discovery: in a couple of decades we may (or may not) find ourselves
using extensively genetic algorithms (or perhaps a combination of genetic algorithms and neural
networks) in scientific discovery. Paraphrasing van Fraassen, science teaches us that the world
is richer than what we can conceive with our “naked mind”. I interpret genetic algorithms as
tools of exploring inconceivable possibilities. Science does not ascertain only to accurate and
exact descriptions of the actual world, but explores classes of possible systems—more or less
close to the real systems, which are not real in themselves. For example, science is interested in
questions such as: “why X does not occur?” where X is a non-actual event that is relevant to

7An interesting parallel between genetic algorithms and discovery program can be found in Simonton (2004)
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real events. Scientists conceive possible systems that could have been instantiated in the world,
but aren’t. One aspect worth mentioning is that simulations create new possibilities which
are not limited by conceivability and definitely not limited by computability in a strong sense.
Nevertheless, genetic algorithms are not “blind” explorers, but optimal explorers. They help us
surpassing the divide between what is conceivable and what is not conceivable in a more or less
rational way through optimization. If the human discoverer is limited by conceivability, then
genetic algorithms may well reveal in the future that they can transgress this human limit.

P. Humphreys talks about numerical simulations as “epistemic enhancers”. In answering
some dissenters Frigg and Reiss (2009); Stockler (2000), he claims that the central philosophical
novelty of simulations is that we see how humans are “pushed away from the center of the
epistemological enterprise” Humphreys (2009). I second here Humphreys, but one component
of this dialectic, is the stochastic and heuristic methods as well as chance in the context of
scientific discovery. They definitely widen the domain of what is scientifically discoverable. For
P. Humphreys, simulations are epistemic enhancers as they broaden the set of “what counts as
observable and mathematically tractable”. “For just as observability is the region in which we,
as humans, have extended ourselves in the realm of the senses, so computability is the region in
which we have extended ourselves in the realm of mathematical representations.” Humphreys
(2004).

Without a proof, I claim that in formal epistemology genetic algorithms illustrate the differ-
ence between assessment and discovery in terms of reliability. They can decouple our scientific
endeavor from our own expectations and help us with not looking for the car keys under the
street lamp, so to speak. A practical application would be the discovery of “laws” or numerical
generalizations where we do not think there are any—and warn us to stop looking for laws
where chances are that there are none.

6.2 The Upward Epistemology

Schmidt and Lipson’s results are intriguing. One first question is whether we can assimilate
genetic algorithms to simulations and if they are simulations, what is simulated? Philosophers
acknowledge that some simulations are bottom-up (the cellular automata are good examples)
because they are not based on a model or theory of the data, but on general hypotheses and
not on “explicit theoretical considerations” Frigg and Reiss (2009); Winsberg (2010). In the
lines of Winsberg’s suggestion, genetic algorithms help philosophers understand the process
of discovery and developing/optimizing novel theories as they display the delicate interplay
between rational search and brute search for a solution. Moreover, and this is the normative
claim of my paper, genetic algorithms could or should contribute in the future to the scientific
discovery. What is also important is to see the role some non-theoretical values play in the
process of the termination condition in which a human decides when to terminate the search.
This evidently induces an epistemic risk and hence an element of conventionality perhaps in
tracking objectivity. All these philosophically rich areas are worth studying.

With its upward epistemology, the genetic algorithm shed new light on several hotly-debated
topics in philosophy of science: a) the role of chance in scientific discovery; b) how we discover
and optimize regularities or patterns in data c) the role of mathematics as a constraint on
natural science, rather than a guiding force.
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7 The “Three Armies” Objection

An objection to my argument runs like this: adding to the metaphor of the glorified slide rule
a couple of elements may resuscitate the deflationism argument. She can contend that nothing
genetic algorithms can do, could not have been done by an army of analytic modelers with
slide rules, an army of gamblers and an army of breeders. In other words, genetic algorithms
add two elements to the background knowledge needed in programming but does not promote
simulations from their relatively minor epistemic role. This new form of deflationism, call it the
“three armies argument” is hard to dismantle and my only suggestion is to “wait-and-see”, but
at least be prepared for the moment when a genetic algorithm will be able to discover something
that we did not know and that we could not even in principle know. But it is clear that the type
of background knowledge involved in scientific discovery may involve in the future evolution,
computer programming, and, last but not least, awareness of the role luck and serendipity play
in the advancement of our knowledge.

8 Conclusion

It is reassuring to see how evolutionary computation weds the Digital Age with the Biological
Age. Purportedly, the whole second half of the 20th century was dominated by advancements
in both areas: DNA in 1952, computer programming in the 60s. But the discovery of genetic
algorithms and its widespread usage in late 1980s marks the beginning of a new era when the
Digital meets the Biological. And the philosopher can only wait for the foreseeable moment of
the informational singularity when artificial intelligence will compete with humans Chalmers
(2010).

My humble philosophical prediction is that genetic algorithms, or some more “evolved”
offspring of theirs, will be there at the “singularity” party–if there shall be any.
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